Abstract

The effects of metallic cobalt crystal phase on catalytic activity of cobalt catalysts in the Fischer–Tropsch synthesis were investigated in a continuous spinning basket reactor. The cobalt catalysts were prepared by impregnation of the cobalt active phase in a microemulsion system on multiwall carbon nanotube supports. A series of cobalt catalysts with different Co particle sizes was prepared by variation of the water-to-surfactant molar ratio from 2 to 12 in the microemulsion system. The X-ray diffraction results validate a complex composition of cobalt phases containing cobalt oxides and metallic cobalt with hexagonal close-packed and face-centered cubic phases. The results show that larger cobalt particles exhibit more face-centered cubic and less hexagonal close-packed metallic cobalt. The experimental results show that the catalysts with higher fractions of hexagonal close-packed phase exhibited higher conversion in the Fischer–Tropsch reaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call