Abstract

A kinetic study of a hydrogen-transfer reaction from (+)-catechin (1) to galvinoxyl radical (G•) has been performed using UV−vis spectroscopy in the presence of Mg(ClO4)2 in deaerated acetonitrile (MeCN). The rate constants of hydrogen transfer from 1 to G• determined from the decay of the absorbance at 428 nm due to G• increase significantly with an increase in the concentration of Mg2+. The kinetics of hydrogen transfer from 1 to cumylperoxyl radical has also been examined in propionitrile (EtCN) at low temperature with use of ESR. The decay rate of cumylperoxyl radical in the presence of 1 was also accelerated by the presence of scandium triflate [Sc(OTf)3 (OTf = OSO2CF3)]. These results indicate that the hydrogen-transfer reaction of (+)-catechin proceeds via electron transfer from 1 to oxyl radicals followed by proton transfer rather than via a one-step hydrogen atom transfer. The coordination of metal ions to the one-electron reduced anions may stabilize the product, resulting in the acceleration of...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.