Abstract

Purple sulfur bacteria (PSB) are important photoautotrophs inhabiting chemoclines in euxinic and meromictic lakes. These organisms are the only producers of the carotenoid, okenone, a compound that has been targeted as a biomarker for photic zone euxinia, particularly in ancient sedimentary environments. Although the natural occurrence and geochemistry of this compound has been studied previously, this is the first systematic and comprehensive report on the microbial physiology of okenone production in pure cultures. Four strains/species: Marichromatium purpuratum DSMZ 1591, Marichromatium purpuratum DSMZ 1711, Thiocapsa marina DSMZ 5653, and FGL21 (isolated from Fayetteville Green Lake, New York) were chosen because they produce okenone and Bacteriochlorophyll a (Bchl a). We developed a new, in vivo technique for the quantification of okenone allowing for more rapid and accurate quantification. The ratio of okenone to Bchl a differs among species and strains of PSB, varying from 0.463 ± 0.002 to 0.864 ± 0.002. Photoheterotrophically grown PSB have statistically significant, lowered okenone:Bchl a ratios, decreasing from 0.784 ± 0.009 under autotrophic metabolism to 0.681 ± 0.002, which we interpret to indicate a decreased requirement for okenone when PSB are provided with a complex (> C1) carbon source. The variation in okenone production raises the question on whether okenone expression is constitutive or inducible. The broader implication is that concentrations of okenone in sediments are dependent on metabolism and species composition, and not solely on PSB cell density.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call