Abstract

Release of neurotransmitters, including dopamine (DA), plays a central role in neuronal death during cerebral ischaemia. We investigated the effects of changes in energy demand and supply on DA release in cerebral ischaemia in vitro. Rat striatal slices were superfused (400 ml/h) with an artificial cerebrospinal fluid at 34°C, unless otherwise stated. Ischaemia were mimicked by removal of O 2 and reduction in glucose concentration from 4 to 2 mM. DA release was monitored by voltammetry. The profile of ischaemia-induced DA release was temperature-dependent. Hypothermia (to 24°C) delayed, slowed, and reduced ischaemia-induced DA release relative to 34°C. Pretreatment of the slices for 3 h with creatine (25 mM) delayed and slowed ischaemia-induced DA release. Conversely, blockade of Na +/K + ATPase with ouabain induced an anoxic depolarisation and rapid DA release similar to ischaemia. In summary, the onset of DA release in this model is controlled by the balance between energy supply and utilisation. Strategies that increase availability of energy substrates for the membrane sodium pump (i.e., pre-incubation with creatine) or decrease their utilisation (hypothermia) slow and delay DA release. Hypothermia may owe part of its neuroprotective effect to a delay and slowing of ischaemia-induced release of DA and/or other neurotransmitters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.