Abstract

Abstract The effects of mesoscale eddies on the subduction and distribution of the North Pacific Subtropical Mode Water (STMW) are investigated using an eddy-resolving ocean general circulation model (OGCM). First, the subduction rate is calculated and the contribution of eddies to the subduction of STMW is estimated. It is found that eddy subduction significantly contributes to the total subduction of STMW. Second, eddy thickness transport and diapycnal flux are directly diagnosed to investigate the large-scale eddy-induced transport process of STMW. The large southward eddy thickness transport in the STMW core density is consistent with eddy subduction. The eddy transport on the isopycnal surface of STMW is directed down the thickness gradient and traverses the mean flow. The meridional eddy transport streamfunction indicates two eddy circulation cells south of 30°N, associated with the circulation of STMW. These cells flatten density surfaces, similar to the effect of the Gent and McWilliams (GM) scheme. The subducted STMW is gradually dissipated to lower or higher densities in the main thermocline, basically by vertical diffusion. Finally, local processes of eddy subduction and transport of STMW are explored using an anticyclonic eddy. Results imply two possible local processes of the eddy subduction of STMW. One is the destruction of a potential vorticity (PV) gradient by eddy mixing, where the PV gradient is due to winter deep mixed layer formation. The other is the southward translation of anticyclonic eddies that accompany low PV.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call