Abstract

BackgroundThe efficacy of mesenchymal stem cell (MSC) transplantation in ischemic stroke might depend on the timing of administration. We investigated the optimal time point of MSC transplantation. After MSC treatment, we also investigated the expression of matrix metalloproteinases (MMPs), which play a role in vascular and tissue remodeling.MethodsHuman bone marrow-derived MSCs (2 × 106, passage 5) were administrated intravenously after permanent middle cerebral artery occlusion (MCAO) was induced in male Sprague-Dawley rats. First, we determined the time point of MSC transplantation that led to maximal neurological recovery at 1 h, 1 day, and 3 days after MCAO. Next, we measured activity of MMP-2 and MMP-9, neurological recovery, infarction volume, and vascular density after transplanting MSCs at the time that led to maximal neurological recovery.ResultsAmong the MSC-transplanted rats, those of the MSC 1-hour group showed maximal recovery in the rotarod test (P = 0.023) and the Longa score (P = 0.018). MMP-2 activity at 1 day after MCAO in the MSC 1-hour group was significantly higher than that in the control group (P = 0.002), but MMP-9 activity was not distinct. The MSC 1-hour group also showed smaller infarction volume and higher vascular density than did the control group.ConclusionsIn a permanent model of rodent MCAO, very early transplantation of human MSCs (1 h after MCAO) produced greater neurological recovery and decreased infraction volume. The elevation of MMP-2 activity and the increase in vascular density after MSC treatment suggest that MSCs might help promote angiogenesis and lead to neurological improvement during the recovery phase after ischemic stroke.

Highlights

  • Mesenchymal stem cell (MSC) therapy might improve the functional outcome in stroke, and the efficacy of mesenchymal stem cell (MSC) therapy might differ depending on the timing of administration [1, 2]

  • The elevation of matrix metalloproteinases (MMPs)-2 activity and the increase in vascular density after MSC treatment suggest that MSCs might help promote angiogenesis and lead to neurological improvement during the recovery phase after ischemic stroke

  • Given the role played by MMPs in modulating the extracellular matrix (ECM) and angiogenesis, the proangiogenic effect of MSC therapy could be mediated by MMPs

Read more

Summary

Background

The efficacy of mesenchymal stem cell (MSC) transplantation in ischemic stroke might depend on the timing of administration. We investigated the optimal time point of MSC transplantation. After MSC treatment, we investigated the expression of matrix metalloproteinases (MMPs), which play a role in vascular and tissue remodeling. Data Availability Statement: All relevant data are within the paper and its Supporting Information files.

Methods
Results
Conclusions
Introduction
Ethics statement
Study design
Discussion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call