Abstract

A theoretical study has been made of the influence of the transmembrane potential difference and the surface potential of living cells on the kinetics of carried-mediated solute transport. It is assumed that the form of the free energy barrier within the membrane may be approximated by one dominant symmetrical peak, and that the electrical field is constant. Both single-ion transport kinetics and cotransport of an ion with a neutral solute are dealt with. Provided that the surface potential and the transmembrane potential are constant, the concentration dependence of the uptake rate is given by the Michaelis-Menten equation. The kinetic parameters, the maximal rate of uptake and the K m, depend on both the surface potential and the membrane potential in a rather complex way. It is shown that the intuitive notion, that the maximal rate of cation uptake will increase when the cell membrane is hyperpolarized, is wrong in its generallity. Both an increase or a decrease may occur, depending on the characteristics of the transport system involved. If the magnitude of the membrane potential and the surface potential depends on the substrate concentration, marked deviations from Michaelis-Menten kinetics may come to the fore. This may result in either apparent positive or apparent negative homotrope cooperative effects. Enhancement of the uptake rate of the substrate ion may occur on adding another cation, despite the fact that the membrane will become depolarized. The same type of complex transport kinetics as found for Rb + and Na + uptake in yeast cells can be simulated by using a single-site transport model and including effects of the membrane potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.