Abstract

The Weihai migmatite in the Sulu ultra-high-pressure (UHP) metamorphic terrane, eastern China, underwent partial melting in the Late Triassic during its exhumation. The primary partial melts experienced a decompressional fractional crystallization (DFC) process to produce plagioclase (Pl)-rich leucosome crystallized under eclogite to granulite facies conditions and K-feldspar (Kfs)-rich pegmatitic veins crystallized under amphibolite-facies conditions. In this study, our results demonstrate that the DFC process can cause decoupling between whole-rock Sr and Nd isotopes. The Pl-rich leucosome has εNd(t) values (–10.4 to −15.0) and initial (87Sr/86Sr) ratios (0.708173–0.712476) very similar to those of the melanosome, but the Kfs-rich pegmatitic veins have homogeneous εNd(t) values (−14.8 to −15.2) and significantly high initial (87Sr/86Sr) ratios (0.713882–0.716284). Our results also suggest that the DFC process can change zircon 176Yb/177Hf and 176Lu/177Hf isotopic ratios, with no effect on 176Hf/177Hf ratios or εHf (t) values. Zircon 176Yb/177Hf and 176Lu/177Hf ratios increase dramatically from the Pl-rich leucosome to the Kfs-rich pegmatitic veins, but zircon 176Hf/177Hf ratios (Pl-rich leucosomes = 0.282330 ± 0.000017; Kfs-rich pegmatitic veins = 0.282321 ± 0.000026) and εHf (t) values (Pl-rich leucosomes = −10.9 ± 0.6; Kfs-rich pegmatitic veins = −11.6 ± 0.8) remain almost unchanged. We propose that the isotopic decoupling between the Pl-rich leucosome and Kfs-rich pegmatitic vein might be caused by melt fractional crystallization occurring too rapidly to allow complete equilibrium between them.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call