Abstract

The present study examined the response of macrophages/microglia to multiple injections of melatonin in the pineal gland and different regions of the brain. The macrophages/microglia showed a significant increase in cell numbers and upregulation of complement type 3 receptors (CR3), major histocompatibility complex class I (MHC I) and class II (MHC II) antigens, and antigens of monocyte/macrophage lineage, as detected by the antibodies OX-42, OX-18, OX-6, and ED1, respectively. The upregulation of the above antigens was observed in 1-d-old rats given daily injections of melatonin and killed at 7-11 d of age; no noticeable change was observed at earlier time intervals. The macrophages/microglia expressing the above antigens appeared round and showed a vacuolated cytoplasm compared with ramified cells in the control rats. Upregulation of CD4 antigens as detected with the antibody W3/25 was also observed in macrophages/microglia in the corpus callosum and epiplexus cells in the lateral ventricles, but not in the pineal gland and the cerebral cortex in the same age group. In rats killed between 2 and 5 d, and at 14 d of age after melatonin treatment, the immunoreactivities of macrophages/microglia with the above mentioned antibodies were comparable to cells in the control rats. Immunoreactive cells were not detected in any of the age groups in melatonin-treated or control rats with the antibodies W3/13 and OX-33, which are markers for T and B lymphocytes. It is concluded that CR3 receptors, MHC antigens, and CD4 antigens on macrophages/microglia are upregulated following melatonin administration. On the other hand, once the melatonin treatment is discontinued the expression of the various antigens/receptors returns to normal levels, suggesting that increased immune potentiality and its maintenance in these cells require the continuous action of the drug.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.