Abstract

ObjectiveParadental tissues (alveolar bone, periodontal ligament (PDL), and gingiva) have the capacity to adapt to their functional environment. The principal cellular elements of the PDL play an important role in normal function, regeneration of periodontal tissue and in orthodontic treatment. Recently, several studies have shown that low-magnitude, high-frequency (LMHF) mechanical vibration can positively influence bone homeostasis; however, the mechanism and optimal conditions for LMHF mechanical vibration have not been elucidated. It has been speculated that LMHF mechanical vibration stimulations have a favourable influence on osteocytes, osteoblasts and their precursors, thereby enhancing the expression of osteoblastic genes involved in bone formation and remodelling. The objective of this study was to test the effect of LMHF mechanical vibration on proliferation and osteogenic differentiation of human PDL stem cells (PDLSCs). MethodsHuman PDLSCs were isolated from premolar teeth and randomized into vibration (magnitude: 0.3g; frequency: 10–180Hz; 30min/24h) and static cultures. The effect of vibration on PDLSC proliferation, differentiation and osteogenic potential was assessed at the genetic and protein level. ResultsAfter LMHF mechanical vibration, PDLSC proliferation was decreased; however, this was accompanied by increased markers of osteogenesis in a frequency-dependent manner. Specifically, alkaline phosphatase activity gradually increased with the frequency of vibration, to a peak at 50Hz, and the level of osteocalcin was significantly higher than control following vibration at 40Hz, 50Hz, 60Hz, 90Hz and 120Hz. Levels of Col-I, Runx2 and Osterix were significantly increased by LMHF mechanical vibration at frequencies of 40Hz and 50Hz. ConclusionsOur data demonstrates that LMHF mechanical vibration promotes PDLSC osteogenic differentiation and implies the existence of a frequency-dependent effect of vibration on determining PDLSC commitment to the osteoblast lineage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.