Abstract

Chemical uncouplers diacetyl monoxime (DAM) and cytochalasin D (cyto-D) are used to abolish cardiac contractions in optical studies, yet alter intracellular Ca(2+) concentration ([Ca(2+)](i)) handling and vulnerability to arrhythmias in a species-dependent manner. The effects of uncouplers were investigated in perfused mouse hearts labeled with rhod-2/AM or 4-[beta-[2-(di-n-butylamino)-6-naphthyl]vinyl]pyridinium (di-4-ANEPPS) to map [Ca(2+)](i) transients (emission wavelength = 585 +/- 20 nm) and action potentials (APs) (emission wavelength > 610 nm; excitation wavelength = 530 +/- 20 nm). Confocal images showed that rhod-2 is primarily in the cytosol. DAM (15 mM) and cyto-D (5 microM) increased AP durations (APD(75) = 20.0 +/- 3 to 46.6 +/- 5 ms and 39.9 +/- 8 ms, respectively, n = 4) and refractory periods (45.14 +/- 12.1 to 82.5 +/- 3.5 ms and 78 +/- 4.24 ms, respectively). Cyto-D reduced conduction velocity by 20% within 5 min and DAM by 10% gradually in 1 h (n = 5 each). Uncouplers did not alter the direction and gradient of repolarization, which progressed from apex to base in 15 +/- 3 ms. Peak systolic [Ca(2+)](i) increased with cyto-D from 743 +/- 47 (n = 8) to 944 +/- 17 nM (n = 3, P = 0.01) but decreased with DAM to 398 +/- 44 nM (n = 3, P < 0.01). Diastolic [Ca(2+)](i) was higher with cyto-D (544 +/- 80 nM, n = 3) and lower with DAM (224 +/- 31, n = 3) compared with controls (257 +/- 30 nM, n = 3). DAM prolonged [Ca(2+)](i) transients at 75% recovery (54.3 +/- 5 to 83.6 +/- 1.9 ms), whereas cyto-D had no effect (58.6 +/- 1.2 ms; n = 3). Burst pacing routinely elicited long-lasting ventricular tachycardia but not fibrillation. Uncouplers flattened the slope of AP restitution kinetic curves and blocked ventricular tachycardia induced by burst pacing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call