Abstract

The Si–Ni composite and Si/Ni alloy composite were prepared by high-energy mechanical milling and arc-melting, respectively, in order to investigate the effects of these processes on the electrochemical performance. The microstructures of Si–Ni composite and Si/Ni alloy composite were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The electrochemical properties have been investigated during 50 cycles for Si–Ni–C composite and Si/Ni alloy–C composite. As a result, both composites demonstrate a higher reversible capacity accompanied with a good cycling stability than the existing Si–C composite. Homogeneously dispersed Ni improved electric conductivity and induced fast charge transport significantly in Si–Ni–C composite whereas the secondary phases (NiSi and NiSi 2) played a role of media to accommodate a large volume change of Si during cycling in Si/Ni alloy–C composite. Consequently, it was identified that electrochemical performances of electrode material are affected by structural factors caused by the different processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.