Abstract

AlCoCrFeNi High Entropy Alloys were here synthesized by the combination of Planetary Ball Milling and Spark Plasma Sintering at 1100 °C. The relatively low rotating speed led to a peculiar agglomerate state referred to as “Mechanical Activated”. The reactive sintering of activated agglomerates leads to a unique dualphase microstructure: the sintered sample exhibited a distinctive nanostructured lamellar microstructure consisting of two main phases (FCC and BCC). Atom Probe Tomography (APT) was used to ensure that the sintered sample was chemically homogeneous at the nanoscale in each phase. APT also revealed the presence of a Cr-rich sigma phase and oxide nanoprecipitates. X-ray Photoelectron Spectrometry (XPS) results demonstrated that most of the oxygen originated from the commercial powders. Calphad calculations revealed that the presence of oxides could alter the microstructure by modifying the global chemical composition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.