Abstract

Beta-cyclodextrin (β-CD) has been applied as drug/food carriers or potential drugs for treating some diseases. Most recently, some evidence indicated that methyl-β-cyclodextrin (MβCD) and 2-hydroxypropyl-β-cyclodextrin (2-HPβCD), two major derivatives of β-CD, may inhibit atherogenesis, implying that cyclodextrins also can be potential drugs for treating atherosclerosis. It is well known that modification (e.g. oxidation) of low-density lipoprotein (LDL) is one of the most critical steps of atherogenesis. Lipoxygenase, an enzyme able to be expressed by atherosclerosis-related vascular cells, is generally regarded as a possible in vivo agent of LDL oxidation. In this study, the effects of MβCD on LDL oxidation induced by lipoxygenase were investigated by measuring the electrophoretic mobility, conjugated diene formation, malondialdehyde (MDA) production, and amino group blockage of LDL. We found that the lipids depleted from LDL by MβCD could be oxygenated more readily by lipoxygenase whereas the lipoxygenase-induced oxidation of the remaining lipid-depleted LDL decreased. The data imply that MβCD has an inhibitory effect on lipoxygenase-induced LDL oxidation and probably helps to inhibit atherogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.