Abstract

Previous studies suggest that developing rat brain is susceptible to reduced thiamine intake. In order to assess the metabolic basis for this susceptibility, activities of three thiamine-dependent enzymes (pyruvate dehydrogenase complex, ?-ketoglutarate dehydrogenase and transketolase) were measured in homogenates of brain tissue from the offspring of thiamine-deficient mothers. Control groups of animals were pair-fed to equal food consumption with the thiamine-deficient animals. The study revealed region-selective delays in the establishment of adult activities of thiamine-dependent enzymes as a result of maternal thiamine deficiency. Pyruvate dehydrogenase complex activities in cerebral cortex were significantly reduced (by 20% P < 0.05); ?-ketoglutarate dehydrogenase activities were also reduced in cerebral cortex (by 30% P < 0.05). In the case of transketolase, enzyme activities were significantly reduced in cerebral cortex, cerebellum and brainstem. Following thiamine replenishment, defective enzyme activities were restored to normal in all cases. However, since thiamine-dependent enzymes are important for the establishment of adult patterns of cerebral energy metabolism and also in myelin synthesis, maternal thiamine deficiency resulting in reductions of thiamine-dependent enzymes at a vulnerable period in brain development could have serious metabolic consequences leading to permanent neurological sequellae in the offspring.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call