Abstract

Although the salt iodization programmes are taken to control iodine deficiency (ID), some regions are still suffering from marginal ID. During pregnancy, marginal ID frequently leads to subtle insufficiency of thyroid hormones, characterized as low serum T4 levels. Therefore, the present research was to explore the effects of maternal marginal ID exposure on dendritic arbor growth in the hippocampal CA1 region and the underlying mechanisms. We established Wistar rat models with ID diet during pregnancy and lactation. The overall daily iodine intakes of the rats were estimated as 7.0, 5.0 and 1.5μg/day in the control, marginal ID and severe ID groups, respectively. To study the morphological alterations of pyramidal neurons, Golgi-Cox procedure was conducted in the hippocampus. Sholl analyses demonstrated a slight decrease in the total length and branching numbers of basal dendrites on postnatal day (PN) 7, PN14 and PN21 in marginal ID group relative to the controls. However, there was no overt morphological change observed in apical dendrites. Immunofluorescence and Western blot analysis indicated that phosphorylation of MAP2, stathmin and JNK1 was down-regulated in marginal ID group. We speculate that the pups treated with maternal marginal ID subjected to subtle changes in dendritic growth of CA1 pyramidal neurons, which may be associated with the dysregulation of MAP2 and stathmin in a JNK1-dependent manner.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call