Abstract

Maternal nutrition during gestation is a leading factor of modifying the foetal epigenome and phenotype for mammals. Imprinting genes have important roles in regulating foetal growth, programming and development. There, however, are limited data available on the effects of feed intake restriction on the expression of imprinting genes in pregnant goats. The present study, therefore, was conducted to assess the effects of maternal feed intake restriction on the relative abundance of mRNA for growth imprinting, DNA methyltransferase (DNMT) and epigenetic transcription-related genes in the liver and heart of foetal goats during gestation. A total of 24 Liuyang black goats (2.0±0.3 yr) with similar body weight (BW, 31.22±8.09 kg) and parity (2) were allocated equally to either a control group (CG) or a restriction group (RG) during both early (from 26 to 65 days) and late (from 96 to 135 days) gestation. All goats were fed a mixed diet and had free access to fresh water. The feed of the RG was 40% less than that of the CG. The early and late gestation goats were weighed, bled and slaughtered on days 65 and 135 of gestation, respectively. In early gestation, the foetal weight, body length, the weight of foetal heart and liver were greater (P < 0.05) in the RG. The CpG methylation of genomic DNA in the foetal heart was less (P = 0.0001) in the RG. The relative abundance of mRNA of methyl-CpG-binding domain protein 2 (MBD2) and methyl-CpG-binding domain protein 3 (MBD3) genes in the foetal liver were greater (P < 0.05) in the RG. During the late gestation, the foetal weight, heart weight and liver weight were less (P < 0.05) in the RG. The relative abundance of mRNA for the MBD2 gene (P = 0.043) in the foetal heart, and the ten-eleven translocation protein 1 (TET1) gene (P < 0.05) in both the foetal heart and liver were greater in the RG. These results indicate feed intake restriction during gestation influenced foetal development and regulated the relative abundance of mRNA for epigenetic transcription-related genes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.