Abstract

On the basis of the transport mechanism of chloride ion, a prediction model of chloride penetration into concrete structures has been developed. The model includes the diffusion of chloride and its dependences on temperature, age, relative humidity, chloride binding and chloride convection by moisture transport. The experimental program has been set up to verify the model developed in the present study. Several series of concrete specimens were immersed in 3.5% chloride solutions for 15 weeks, and the chloride profiles of the specimens were measured and compared to the predicted chloride profiles. In addition, field measurements have been also conducted. From 10-year-old bridge piers, the chloride profiles in concrete under tidal zone were measured and compared with the predicted chloride profiles. The effects of chloride binding, relative humidity, temperature, exposure condition, and age-dependence on the chloride penetration in concrete were clarified from the present analyses. It was found from the present study that all these variables affect greatly the chloride penetration profiles in concrete. The comparison of the laboratory and field test data with the present theory confirms that the proposed model can be realistically used to predict the penetration of chloride ions into concrete structures under sea environments. Further, these results may be efficiently used for the realistic assessment and design for durability of concrete structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.