Abstract

Advances in the infrared and radio observational techniques in the last decade have led to a revolution in our understanding of the late stages of stellar evolution. Intermediate (1–8 M ⊙) mass stars are found to be undergoing rapid mass loss in the form of a stellar wind during the asymptotic-giant-branch after the exhaustion of helium burning in the core. Significant fraction of the original stellar mass can be lost in short time scales of < 10 6 yr. The ejected mass constitutes the major component of matter returned by stars to the interstellar medium. Since such material has been heavily nuclear processed, they also represent the dominant mechanism of chemical enrichment of the Galaxy. The high rate of mass loss implies that the majority of Population I stars end their evolution as planetary nebulae and white dwarfs rather than superovae and neutron stars. In this review, we summarize recent observational methods in the determination of the mass loss rate and the associated physical parameters of the stellar wind. Since the observed mass loss rate greatly exceeds the nuclear burning rate, we also discuss the theoretical models on how such mass loss affects the asymptotic giant branch evolution. A scenario is presented on how red giants evolve into planetary nebulae, a process which has been very poorly understood until recently. Conjectures on how the current evolutionary “missing link” - the proto-planetary nebulae - could be identified are also considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.