Abstract

A comprehensive experimental study was performed to demonstrate the effects of ambient air pressure on the emission characteristics of analyte elements in a variety of host materials in laser-induced plasma spectroscopy in low ambient air pressures. It was shown that the pressure-dependent characteristics of the emission lines are generally influenced by host elements when significant mass difference exists between the analyte and the host elements. Further investigation on the time profiles of the spatially integrated emission intensities reveal the important interplay among the dynamical factors associated with the mass-difference effect, which effectively influence the shock wave excitation process and hence the related emission intensities. The result of this study also indicates the need of proper control of time delay for the detection of maximum emission intensity in the cases considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.