Abstract

BackgroundDue to the great advantages in selection accuracy and efficiency, genomic selection (GS) has been widely studied in livestock, crop and aquatic animals. Our previous study based on one full-sib family of Litopenaeus vannamei (L. vannamei) showed that GS was feasible in penaeid shrimp. However, the applicability of GS might be influenced by many factors including heritability, marker density and population structure etc. Therefore it is necessary to evaluate the major factors affecting the prediction ability of GS in shrimp. The aim of this study was to evaluate the factors influencing the GS accuracy for growth traits in L. vannamei. Genotype and phenotype data of 200 individuals from 13 full-sib families were used for this analysis.ResultsIn the present study, the heritability of growth traits in L. vannamei was estimated firstly based on the full set of markers (23 K). It was 0.321 for body weight and 0.452 for body length. The estimated heritability increased rapidly with the increase of the marker density from 0.05 K to 3.2 K, and then it tended to be stable for both traits. For genomic prediction on the growth traits in L. vannamei, three statistic models (RR-BLUP, BayesA and Bayesian LASSO) showed similar performance for the prediction accuracy of genomic estimated breeding value (GEBV). The prediction accuracy was improved with the increasing of marker density. However, the marker density would bring a weak effect on the prediction accuracy after the marker number reached 3.2 K. In addition, the genetic relationship between reference and validation population could influence the GS accuracy significantly. A distant genetic relationship between reference and validation population resulted in a poor performance of genomic prediction for growth traits in L. vannamei.ConclusionsFor the growth traits with moderate or high heritability, such as body weight and body length, the number of about 3.2 K SNPs distributed evenly along the genome was able to satisfy the need for accurate GS prediction in the investigated L.vannamei population. The genetic relationship between the reference population and the validation population showed significant effects on the accuracy for genomic prediction. Therefore it is very important to optimize the design of the reference population when applying GS to shrimp breeding.

Highlights

  • Due to the great advantages in selection accuracy and efficiency, genomic selection (GS) has been widely studied in livestock, crop and aquatic animals

  • The possible strategies to implement genomic selection in aquaculture breeding schemes were evaluated based on the simulated data, and the results showed that GS could generate high genetic gain, high selection accuracy and low inbreeding rates under the current family-based breeding schemes [22]

  • We found that GS was feasible for growth traits in L. vannamei based on one full-sib family [27]

Read more

Summary

Introduction

Due to the great advantages in selection accuracy and efficiency, genomic selection (GS) has been widely studied in livestock, crop and aquatic animals. Mass selection is a practical approach for the traits that can be recorded without damage [2], family-based selective breeding method has become the industry standard in aquatic species due to the advantage that it is effective for all types of traits such as carcass quality or disease resistance [1]. Several family-based breeding programs, aiming to improve growth and disease resistance traits in Litopenaeus vannamei (L. vannamei), have been performed in a number of countries since 1993 [3,4,5,6]. These programs have improved the target traits a lot and made great contributions to the development of shrimp industry. New methods and technologies are urgently required for accelerating the genetic improvement of important traits in L. vannamei

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call