Abstract
In nature, CH4 hydrates are mainly buried in marine sediments. The complex marine environments on the seafloor continuously affect hydrate formation. Herein, systematic molecular simulations have been performed to investigate CH4 hydrate formation in clay nanopore, mainly affected by several marine environmental factors, including seawater salinity, pressure and temperature. Simulation results show that these factors exert different effects on hydrate formation in the nanopore and the outside bulk solutions by affecting the mass transfer and phase separation inside and outside of the nanopore. Specifically, high salinity hinders the diffusion of CH4 molecules from nanopores into the outside bulk solutions, promoting hydrate formation in nanopore and inhibiting hydrate formation in bulk solution; salinity has a dual effect on hydrate formation in the whole system by changing the local CH4 concentration via the formation of the hydration of salt ions. High pressure favors the diffusion of CH4 molecules from nanopore into outside bulk solutions, promoting hydrate formation in bulk solution and inhibiting hydrate formation in nanopore; high pressure promotes hydrate formation at the nanopore throats by increasing CH4 concentration and reducing ion concentration therein. In contrast, temperature significantly affects hydrate formation in the system by causing phase separation, i.e. high temperature promotes the aggregation of CH4 molecules to form nanobubbles and inhibits hydrate formation. Under high temperature conditions, the nanobubble in the nanopore gradually decomposes, while the nanobubble in the outside bulk solution grows an extra-large cylindrical nanobubble. These molecular insights into the formation behavior of CH4 hydrates in clay nanopores are helpful for understanding the formation process of natural gas hydrates in marine sediments and the development and utilization of CH4 hydrates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.