Abstract
An investigation is conducted into the effects of dimensional variation, material selection, and manufacturing process on the performance characteristics of a self-oscillating fluidic oscillator. Measurements of oscillation frequency, inlet pressure, and jet profile are performed for actuators having varying nozzle and cavity dimensions. Actuators made of aluminum and carbon fiber reinforced polyetherketoneketone are tested, and the effects of varying manufacturing processes between machining, selective laser sintering, stereolithography, and injection molding are assessed. Models based on dimensionless variables are used to characterize the variation in frequency and inlet pressure for a given mass flow rate. Variation of the nozzle geometry and cavity shoulder width influence the oscillation frequency, and variation of nozzle geometry affects the required driving pressure. Dimensional variations due to manufacturing process tolerances are found to affect actuator performance characteristics, while material selection alone does not affect, provided manufacturing to the required tolerances is possible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.