Abstract

The effects of manufacturing parameters in the planar flow casting process on the ribbon formation and the puddle stability of Fe78Si9B13 alloy are investigated experimentally. The ribbon morphology, surface quality, and puddle geometry are examined at different conditions and the transient evolution processes of puddle for molten metal passing through a rectangular nozzle are observed. The successful operability window for the production of Fe78Si9B13 ribbon is established and it is found the scope is different from that of Al-based alloy. The trend lines of the alloys on the plane of Reynolds number versus Weber number corresponding to obtain a successful ribbon are established. The ribbon thickness is found to vary with the applied pressure across the crucible and the wheel speed to the power of 0.45 and −0.9, respectively. The formation of small air pockets could be enhanced by increasing the applied pressure difference and wheel speed, or by decreasing the nozzle-wheel gap and the jetting temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.