Abstract

In the visual perception perspective of observational learning, the manipulation of relative and absolute motion information in visual demonstrations optimally directs learners’ search towards appropriate task solutions. We assessed the effect of emphasizing transformational information and removal of structural information using point-light kinematic displays in approximating the model’s relative motion patterns. Participants viewed computer-simulated point-light demonstrations or normal video demonstrations before and intermittently throughout 100 acquisition trials with knowledge of results on an underarm modified-dart aiming task. On the next day, all participants performed 20 retention trials without demonstrations. The kinematics of spatial and temporal coordination and control variables were examined relative to the model’s action, as well as performance scores. The results indicated that approximation of the model’s spatial and temporal coordination and control patterns was achieved after observation of either type of demonstrations. No differences were found in movement outcomes. In a second experiment, the effects of manipulating absolute motion information by slowmotion demonstrations were examined relative to real-time demonstrations. Real-time demonstrations led to a closer approximation to the model’s spatial and temporal coordination patterns and better outcome scores, contradicting predictions that slow-motion displays convey intact relative motion information. We speculate that the effect of visual demonstration speed on action perception and reproduction is a function of task constraints ‐ that is, novelty or familiarity of relative motion of demonstrated activities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.