Abstract
Maltogenic α-amylase (MA) are commercially used in the baking industry to retard starch retrogradation. However, whether MA can be used to modify rice flour during the fermentation process to improve the quality of rice flour remains unclear. In this study, MA was introduced during rice cake (RC) processing, and the modification effect and underlying mechanism were explored. Mn showed a decreasing trend except for 4.0 × 10-3 U/g sample. Chain length distribution data showed that MA effectively hydrolyzed long chains in amylopectin and increased the concentration of amylopectin chain length with a degree of polymerization of ≤ 9. High-performance liquid chromatography results suggested that the maltose content increased to 3.14% at an MA concentration of 9.5 × 10−3 U/g, which affected the fermentation effect of MA-treated RC. MA effectively reduced the viscosity of RC, and the gelatinization enthalpy of RC changed to 0.835 mJ/mg. MA also reduced the hardness and chewiness of RC after storage for 7 d. Moreover, rapidly digestible starch and slowly digestible starch contents of MA-treated RC decreased and increased, respectively, and resistant starch contents were remained unchanged. These results indicate that MA exerts a significant and effective antiretrogradation effect on RC. Combining the above results with sensory evaluation findings, an MA concentration of 4.0 × 10−3 U/g was the best supplemental concentration for obtaining RC with better edible quality. These findings suggest that MA treatment to rice flour during the fermentation process not only preserved the edible quality of RC but also retarded its retrogradation, thus, providing a novel processing method for the industrial production of RC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.