Abstract

We study magnon-magnon interactions and their effects in a spiral magnet induced by combination of an antiferromagnetic Heisenberg interaction and a Dzyaloshinsky-Moriya interaction. We show that the main effect of magnon-magnon interactions on low-energy magnons is to renormalize the coefficient of energy dispersion. This could explain why some experiments are consistent with the noninteracting theory. We also show that although the magnon-magnon interactions induce the pair amplitude for low-energy magnons, its effect on the excitation energy is negligible. This suggests that for magnons the finite pair amplitude does not necessarily accompany the pair condensation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call