Abstract

Abstract Metallic nanoparticles effect on magnetohydrodynamicsc (MHD) micropolar blood flow through a vertical artery with six different stenosis is investigated. Conservation of mass, momentum, and energy governing partial differential equations are transformed into ordinary differential equations by means of mild stenosis assumptions. Solutions for velocity, microrotation, stream function, temperature, resistance impedance, and wall shear stress are calculated and expressed through graphs against various emerging physical parameters. It is observed that as the nanofluid volume fraction ϕ increases, the velocity and wall shear stress increase, while resistance impedance has an inverse trend. It is also found that as the nanofluid volume fraction ϕ increases, the temperature decreases. Moreover, the trapping phenomena in the stenosed region are introduced through graphs. These findings illustrate that nanoparticles’ technique could be a promising therapeutic strategy against arterial diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call