Abstract

In this work, we investigate the quasi-static shear deformation of magnetic particles (MPs) in a Couette flow of magnetorheological (MR) fluids through Stokesian dynamic simulations. The magnetized walls are modeled by a congregation of magnetic dipoles and their effects on the MPs are considered. The simple shear flow of the base fluid with linear velocity distribution is used to generate the shear deformation of the MP structure and the yield stresses under different shear rates are obtained. Comparing with the relatively long chains forming in base fluid without the effect of magnetized walls, the initial structure of MPs is mainly in the form of short chains due to the attractive force of walls. At the beginning of the shear deformation of the MP structure, the concentration of MPs near the walls is found. As the shear deformation develops, however, the chains concentrate at the center of the simulation domain and the MPs near wall boundaries are attracted to the center. The yield stress depends on the initial structure of MPs which is affected by the magnetized walls. It is revealed that the larger shear rate of base fluid results in the larger yield stress, and the effects of the magnetization intensity of the walls and their space distance on the yield stress are also investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.