Abstract

The aim of this study was to improve the efficiency of traditional proton exchange membranes by replacement using ceramic membranes with microalgae cathodes under various magnetic fields (MFs) of 100–300 mT in a ceramic microbial fuel cell (CMFC). The experimental results showed that the power generation can be enhanced by 61% when implementing a 200 mT MF. The application of a higher MF intensity, up to 200 mT, increased the electric charge generation yet decreased it with a higher MF value. Additionally, the MF had the ability to improve the power density of the CMFC, and a maximum power density of 35.9 mW m−2 and maximum current density of 158.7 mA m−2 were achieved with the 200 mT MF. Moreover, biocathode maintains a stable pH value that obtained more microalgae biomass by 200 mT MF stimulation. Further work will be focused on optimizing the appropriate MF intensity along with the capacity of carbon dioxide (CO2) absorption by microalgae in CMFC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.