Abstract
We study the spin dynamics in a 3D quantum antiferromagnet on a face-centered cubic (FCC) lattice. The effects of magnetic field, single-ion anisotropy, and biquadratic interactions are investigated using linear spin wave theory with spins in a canted basis about the Type IIA FCC antiferromagnetic ground state structure which is known to be stable. We calculate the expected finite frequency neutron scattering intensity and give qualitative criteria for typical FCC materials MnO and CoO. The magnetization reduction due to quantum zero point fluctuations is also analyzed.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.