Abstract

Purpose – The purpose of this paper is to investigate the effects of magnetic field and viscous dissipation on mixed convection heat transfer, fluid flow and entropy generation in a porous media filled square enclosure heated with corner isothermal heater. Design/methodology/approach – Finite volume method has been used to solve governing equations. A code is developed by FORTRAN and entropy generation is calculated from the obtained results of velocities and temperature. Results are presented via streamlines, isotherms, local and mean Nusselt number for different values of Richardson number (0.001=Ri=100), Hartmann number (0.001=Ha=100), Darcy number (0.001=Da=0.1), length of heaters (0.25=hx=hy=0.75) and viscous dissipation factors (10−4=ε=10−6). Findings – It is observed that entropy is generated mostly due to lid-driven wall and right side of the heater. Entropy generation decreases with increasing of Hartmann number and heat transfer increases with decreasing of viscous parameter. Originality/value – The originality of this work is to application of magnetic field and viscous dissipation on entropy generation in a lid-driven cavity with corner heater. Here, both corner heater and the external forces are original parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call