Abstract

This paper presents a study of the effect of a magnetic field and variable viscosity on steady two‐dimensional laminar non‐Darcy forced convection flow over a flat plate with variable wall temperature in a porous medium in the presence of blowing (suction). The fluid viscosity is assumed to vary as an inverse linear function of temperature. The derived fundamental equations on the assumption of small magnetic Reynolds number are solved numerically by using the finite difference method. The effects of variable viscosity, magnetic and suction (or injection) parameters on the velocity and temperature profiles as well as on the skin‐friction and heat‐transfer coefficients were studied. It is shown that the magnetic field increases the wall skin friction while the heat‐transfer rate decreases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.