Abstract

The discharge capacity, microstructures, and corrosion resistance of some as‐cast alloys represented by the formula La0.7−xMgxPr0.3Al0.3Mn0.4Co0.5Ni3.8, where x = 0.0, 0.1, 0.3, 0.5, and 0.7, were investigated by SEM/EDX, XRD, and electrochemical measurements. The partial substitution of La by Mg refined the grain structure while the total substitution changed it from equiaxed to columnar. Three phases were detected: a major phase (M), a grey phase (G), and a dark phase (D). The compositions analyzed by EDX suggested that the M phase was close to a LaNi5 phase. With the increase of the Mg content, the analyses revealed a G phase with composition close to a RMg2Ni9 (R = La,Pr) and a D phase close to a MgNi2 phase. The XRD analysis and Rietveld refinement corroborated the EDX results. The corrosion resistance of the alloys was evaluated in 6.0 mol·L−1 KOH solution, and the results showed that the substitution of La by Mg was beneficial for this alloy property. Nevertheless, Mg addition was deleterious to the discharge capacity of the electrodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.