Abstract

Human aortic endothelial cells play a key role in the pathogenesis of atherosclerosis, which is a common, progressive, and multifactorial disease that is the clinical endpoint of an inflammatory process and endothelial dysfunction. Study and development of new therapies against cardiovascular disease must be tested in vitro cell models, prior to be evaluated in vivo. To this aim, new cell culture platforms are developed that allow cells to grow and respond to their environment in a realistic manner. In this work, the cell adhesion and morphology of endothelial cells are investigated on functionalized porous silicon substrates with two different pore size configurations: macroporous and nanoporous silicon. Herein, we modified the surfaces of porous silicon substrates by aminopropyl triethoxysilane, and we studied how different pore geometries induced different cellular response in the cell morphology and adhesion. The cell growth over the surface of porous silicon becomes an attractive field, especially for medical applications. Surface properties of the biomaterial are associated with cell adhesion and as well as, with proliferation, migration and differentiation.

Highlights

  • Human aortic endothelial cells (HAECs) have been the most commonly used model in endothelial dysfunction systems

  • We report the cell adhesion and cell morphology of HAEC on macro- and nanoporous silicon substrates silanized with aminopropyl triethoxysilane (APTES)

  • The interactions between cells and Si substrates have been characterized by confocal and scanning electron microscopy (SEM), and the results show the effect of the surface topography on the HAEC behavior compared to the flat silicon

Read more

Summary

Introduction

Human aortic endothelial cells (HAECs) have been the most commonly used model in endothelial dysfunction systems. The endothelium serves as a natural barrier to prevent platelet adhesion and thrombosis. Disruption of the endothelium can lead to thrombosis, inflammation, and restenosis. Drug-eluting stents are employed to minimize restenosis, there are reports of late thrombosis associated with the use of these drugs. It is believed that these effects are due to the slow growth of the endothelial cells to regenerate the endothelium monolayer of the stent material [1]. Because of the capacity of these cells to adhere to the substrate and to produce cell adhesion molecules, HAECs seem to be a good cell model to screen new cardiovascular therapies. Surface modifications have been applied to improve cell adhesion and accelerated cell

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call