Abstract

The effect of macroinvertebrate detritivore density on the mass loss rates of leaf litter of Alnus glutinosa (alder) was assessed. Experimental freshwater macrocosms, with increasing densities of four species of macroinvertebrate detritivores belonging to two functional groups (shredders and scrapers), were set up outdoors. The litter bag technique was used to assess decomposition rates of alder leaves. Indirect effects of increasing density of macroinvertebrates on phytoplankton standing crop in the water column were investigated by analysing Chlorophyll a concentration. Decomposition rate increased as animal density increased, although a continuous increase in detritivores density resulted in a discrete, step-wise increase of the decomposition rates. Animal colonisation followed an exponential pattern in low-medium density treatments versus a typical `bell-shape' curve in high density treatments; animals started to leave the consumed patches when about 60% of the initial leaf mass was lost (35th day in high-density treatments). Diversity (Hs) of the simplified detritivore community decreased as decomposition proceeded, with a dominance of shredders during the last phase of decomposition. Faster decomposition rate of detritus in the benthic compartment lead to a higher microalgae standing crop in the water column emphasising the role of allochthonous detritus as a source of nutrients for algae primary production in coastal freshwater ecotones.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call