Abstract

.We numerically investigate the generation of solitons in current-biased long Josephson junctions in relation to the superconducting lifetime and the voltage drop across the device. The dynamics of the junction is modelled with a sine-Gordon equation driven by an oscillating field and subject to an external non-Gaussian noise. A wide range of α-stable Lévy distributions is considered as a noise source, with varying stability index α and asymmetry parameter β. In junctions longer than a critical length, the mean switching time (MST) from the superconductive to the resistive state assumes a value independent of the device length. Here, we demonstrate that this value is directly related to the mean density of solitons which move into or from the washboard potential minimum corresponding to the initial superconductive state. Moreover, we observe: (i) a connection between the total mean soliton density and the mean potential difference across the junction; (ii) an inverse behaviour of the mean voltage in comparison with the MST, with varying the junction length; (iii) evidence of non-monotonic behaviours, such as stochastic resonant activation and noise-enhanced stability, of the MST versus the driving frequency and noise intensity for different values of α and β; (iv) finally, these non-monotonic behaviours are found to be related to the mean density of the solitons formed along the junction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.