Abstract
As delays are common, persistent, and ingrained in daily life, it is imperative to take them into account. In this work, we explore the averaging principle for impulsive Atangana–Baleanu fractional stochastic delay differential equations driven by Lévy noise. The link between the averaged equation solutions and the equivalent solutions of the original equations is shown in the sense of mean square. To achieve the intended outcomes, fractional calculus, semigroup properties, and stochastic analysis theory are used. We also provide an example to demonstrate the practicality and relevance of our research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.