Abstract

We have investigated the ability of the agonist analog of luteinizing hormone-releasing hormone (LH-RH), D-Trp6-LH-RH (LH-RHa), and of CaCl2 to inhibit directly gonadotropin stimulation of adenylyl cyclase in a cell-free system prepared from human corpus luteum. In the presence of a submaximally effective concentration of hCG, addition of 10(-5)M final concentration of LH-RHa did not alter the gonadotropin-stimulated enzyme activity, nor did LH-RHa alone show any effect upon basal levels of the enzyme. The failure to inhibit adenylyl cyclase would indicate that the LH-RHa does not affect gonadotropin receptor binding or cAMP synthesis and/or degradation in this membrane system, suggesting that the luteolytic effects of LH-RH are unlikely to involve a direct antigonadotropic activity at the level of the human corpus luteum. In great contrast to LH-RHa, addition of CaCl2 resulted in a dose-dependent inhibition of hCG-stimulable adenylyl cyclase. Thus, in the presence of either a maximally or submaximally effective concentration of hCG, inhibition was significant at 0.5 mM CaCl2 added in excess of ATP (2 mM) and EDTA (1 mM), being about 90% upon addition of 2.5 mM CaCl2. We also found that calcium reduced enzyme stimulation by forskolin and the GTP analog, guanyl 5'-yl imidodiphosphate [GMP-P(NH)P] in a dose-related manner and that activation by NaF was less sensitive to inhibition by calcium. Accordingly, at 2.5 mM CaCl2, guanyl nucleotide and forskolin stimulations were inhibited 96% and 86%, respectively, while NaF stimulation was reduced by 40%. Because previous studies have shown that calcium does not impair gonadotropin binding activity, the calcium-dependent inhibition of gonadotropin responsiveness reported here would imply an alteration in the functional coupling of the components of the luteal adenylyl cyclase system. These data suggest that calcium may play a role in the regulation of gonadotropin action in the human corpus luteum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.