Abstract
AbstractThe saturation of a monochromatic light λ is defined as the reciprocal of the just noticeable colorimetric purity ΔP(λ) from a white, which is a conventional definition having been used previously often. The present study measures saturation functions of monochromatic lights at various luminance levels ranging from 10 to 1000 Td. The main result of this article is that the saturation function systematically changes in shape with the luminance level; as the luminance increases, the values of 1/ΔP(λ) relatively increase for shorter wavelengths. The chromatic sensitivity function C(λ) is defined by the reciprocal of the radiance of a monochromatic light λ added to the white field in order to detect a difference in chromaticity from the equal‐luminance reference white. The C(λ) functions at various luminance levels are shown to have three peaks at the short‐, middle‐, and long‐wavelength regions. These peaks are similar to those of the increment threshold functions, and the saturation function can be approximated by the ratio of the increment threshold spectral sensitivity to the relative luminous efficiency, except for the 570 nm data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.