Abstract

We examined the effects of L-propionylcarnitine (Prop. C), a short-chain acylcarnitine, on amphiphile (L-lysophosphatidylcholine or L-palmitoylcarnitine)-induced electrophysiological and ultrastructural changes in isolated guinea pig ventricular papillary muscles, under acidic conditions (pH 6.9). Conventional microelectrode, tension-recording, and electron microscope techniques were used. Both amphiphiles, at a concentration of 10(-4) M, significantly decreased the resting membrane potential, action potential amplitude, and action potential duration, but increased the developed and resting tension. Such amphiphile-induced electrical changes were not observed in muscles pretreated with the beta-blocker, atenolol, although the mechanical changes remained unaffected. The application of Prop. C (10(-2) M), in the continued presence of the amphiphiles caused a return of the action potential duration and the developed tension to the control level. However, the resting potential and action potential amplitude remained unaffected; in fact, the maximum upstroke velocity (Vmax) of the action potential tended to decrease further. Pretreatment with Prop. C prevented all the amphiphile-induced electrophysiological and mechanical changes, except for Vmax. Electron microscopic studies revealed that amphiphile-induced ultrastructural changes were prevented, at least in part, in the presence of Prop. C. Thus, Prop. C antagonizes some of deleterious effects of amphiphiles, such as lysophosphatidylcholine and palmitoylcarnitine, upon the electrical and mechanical activities of the ventricular muscle, under acidic conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.