Abstract

ABSTRACTWe have recently observed that the initial performance of amorphous silicon (a-Si) solar cells can be improved by up to several % by annealing the cells at successively lower temperatures for successively longer times. For some devices, we also observed an improvement in performance after light soaking that was statistically significant. We have also observed an improvement in the stabilized performance of cells that were subjected to reverse bias annealing after light soaking. This effect was clearly evident in single-junction p-i-n cells with amorphous silicon-carbon (a-SiC) i-layers where the density of metastable centers is very high (> 1018cm-3). When we light-soaked a-SiC cells and then subjected them to low-temperature reverse bias annealing, they exhibited clear evidence of improved short-wavelength response after a second light soaking. These annealing effects are explained in terms of hydrogen motion within the a-Si network and within microvoids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.