Abstract
Low-salinity adaptability was investigated in a flatfish spotted halibut Verasper variegatus during the period from late metamorphic larvae to early juveniles by a 20-day rearing experiment under different salinity regimes (1, 4, 8, 16 and 32 ppt). Effects of low-salinity on growth and development were examined and the changes in the prolactin (PRL) production level in the pituitary and the gill chloride cell morphology were examined as physiological backgrounds for low salinity adaptation. PRL cells and chloride cells were identified by immunocytochemistry with a specific antiserum for PRL 188 and Na +,K +-ATPase. Most of the fish exposed to over 4 ppt survived for 20 days, but all the fish exposed to 1 ppt died within 5 days. Fish kept in intermediate salinities (8, 16 ppt) grew significantly better than those in the control group (32 ppt). Fish exposed to 4 ppt attained almost the same body length as the control group at 20 days after transfer, although these fish showed an abnormally dark body color as well as delayed development. These results suggested that spotted halibut has a high-adaptability to low-salinity environments and prefers an intermediate salinity near iso-osmolality (about 12 ppt) from the late metamorphic larval stage, but does not completely adapt to a hypoosmotic of 4 ppt salinity or less than half of the osmolality. The percentage of PRL-cell volume to pituitary volume was significantly higher at 4 ppt than in the control group. The chloride cells in gill filaments were significantly larger at 4 ppt than in the control group. These results suggest that juveniles could adapt to a low-salinity environment due to the activation of PRL production and enlargement of chloride cells. These laboratory findings suggest that late metamorphic larvae and early juveniles of spotted halibut may utilize a low salinity environment such as estuarine tidal flats or very shallow coastal areas as their nursery grounds in the sea.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Experimental Marine Biology and Ecology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.