Abstract

ObjectivesThe aim of this systematic review and meta-analysis was to assess the effects of low-level laser therapy (LLLT) on the orthodontic mini-implants (OMI) stability.Materials and methodsAn unrestricted electronic database search in PubMed, Science Direct, Embase, Scopus, Web of Science, Cochrane Library, LILACS, Google Scholar, and ClinicalTrials.gov and a hand search were performed up to December 2020. Randomized clinical trials (RCTs) or non-randomized clinical trials (Non-RCTs) that assessed the effects of LLLT on the OMI stability were included. Data regarding the general information, LLLT characteristics, and outcomes were extracted. The authors performed risk of bias assessment with Cochrane Collaboration’s or ROBINS-I tool. Meta-analysis was also conducted.ResultsFive RCTs and one Non-RCT were included and 108 patients were evaluated. The LLLT characteristics presented different wavelength, power, energy density, irradiation time, and protocol duration. Five RCTs had a low risk of selection bias. Two RCTs had a low risk of performance and detection bias. All RCTs had a low risk of attrition bias, reporting bias and other bias. The Non-RCT presented a low risk of bias for all criteria, except for the bias in selection of participants. The meta-analysis revealed that LLLT significantly increased the OMI stability (p < 0.001, Cohen’s d = 0.67) and the highest clinical benefit was showed after 1 (p < 0.001, Cohen’s d = 0.75), 2 (p < 0.001, Cohen’s d = 1.21), and 3 (p < 0.001, Cohen’s d = 1.51) months of OMI placement.ConclusionsLLLT shows positive effects on the OMI stability.

Highlights

  • Orthodontic mini-implants (OMI) are the most effective tool for reinforcement of orthodontic anchorage [1]

  • The Non-Randomized clinical trials (RCT) presented a low risk of bias for all criteria, except for the bias in selection of participants

  • The meta-analysis revealed that level laser therapy (LLLT) significantly increased the OMI stability (p < 0.001, Cohen’s d = 0.67) and the highest clinical benefit was showed after 1 (p < 0.001, Cohen’s d = 0.75), 2 (p < 0.001, Cohen’s d = 1.21), and 3 (p < 0.001, Cohen’s d = 1.51) months of OMI placement

Read more

Summary

Introduction

Orthodontic mini-implants (OMI) are the most effective tool for reinforcement of orthodontic anchorage [1]. This temporary anchorage device has become popular among orthodontists, being considered a versatile, welltolerated, low-invasive, simple to insert ad low-cost method. OMI provides great mechanical predictability and stability [2]. The maintenance of mechanical stability and the absence of pain and peri-implant inflammation are directly related to the clinical success of the OMIs [3, 4]. Primary stability is conferred shortly after the procedure for placement of the device and secondary stability is expressed after the healing phase. The retention of OMI in bone depends on numerous factors, such as bone density and thickness of the insertion site, device surface morphology, surgical technique, and physiological repair process [3, 5, 6]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call