Abstract

Effects of low-energy impact loading and thermal cycling on fatigue behavior of carbon fiber reinforced epoxy (carbon/epoxy) laminates are examined. A low-energy of 0.62 Joules was adopted to impact carbon/epoxy laminates prior to thermal cycling exposure and fatigue test. The temperature ranged between 60 and −60 °C for thermal cycling and the stress ratio of 0.1 with a frequency of 3 Hz for fatigue loading were used. Impact performances were tested on the virgin specimens and the thermal-cycling exposure specimens. Residual tensile strength and fatigue tests were performed on the laminate composites after being subjected to thermal cycling. The relationship between tensile strength reduction and fatigue performance after thermal cycling was investigated. Stiffness degradation during fatigue testing was monitored; the differences in stiffness for these three composites (virgin specimens, low-energy impacted specimens, low-energy impacted and thermal-cycling exposure specimens) were compared and the coupling effects of low-energy impact and thermal fatigue were studied. Furthermore, the S-N curves were also plotted and the variation was compared on the aforementioned three composites. SEM was used to examine the difference in fracture morphologies on the composites with and without suffering low-energy impact and thermal fatigue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.