Abstract

In this study, we investigated the effects of low-to-moderate doses of radiation in mice, given our limited understanding of the health risks associated with these exposures. Here, we demonstrate the different responses of the CD2F1 mouse hematopoietic system to low-to-moderate (0.5, 1, 3 or 5 Gy) doses of gamma radiation. After 3 and 5 Gy of 60Co total-body irradiation (TBI), mouse blood cell counts were decreased and maintained below baseline up to 28-42 days. In contrast, after 0.5 Gy TBI, lymphocyte and monocyte counts increased, and peaked from day 3 to day 14. Radiation doses at 0.5 and 1 Gy did not cause cell death or T-cell subpopulation changes in spleen and thymus, whereas the clonogenicity of mouse bone marrow (BM) progenitor cells was significantly suppressed on the first day after 0.5-5 Gy TBI, and these low levels were maintained up to 42 days. Although a transient recovery in total colony forming units (CFUs) was shown in mouse BM at days 14 and 21 after 0.5 Gy TBI, the early-stage multipotential progenitor colonies (CFU-GEMM) remained at a significantly low level compared to those of the sham-irradiated (0 Gy) controls. Consistently, the level of stem cell factor (SCF) in BM cells was decreased after low-to-moderate TBI. Serum from individual mice was collected after irradiation and 23 cytokines/chemokines were measured; massive releases of cytokines and chemokines were observed at day 3 postirradiation in a dose-dependent manner. When human hematopoietic CD34+ cells were cultured with the serum collected from mice irradiated at different doses, a significant decrease of CFU-GEMM colonies in the CD34+ cells was observed. Our data suggest that low-to-moderate doses of radiation induced cellular responses that are cell type-dependent. The early stage multipotential progenitor cells in mouse BM were the most sensitive cells even to low-dose irradiation compared to spleen and thymic cells, and 0.5 Gy TBI induced hematopoietic cell injury from day 1 to the end of our experiment, day 42 postirradiation. Radiation-induced decrease of SCF in mouse BM and increase in circulating pro-inflammatory factors may be responsible for the enhanced sensitivity of hematopoietic progenitor cells to radiation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.