Abstract

The application of ultraviolet-B (UVB) radiation to control spider mites is challenging as a key technology for integrated pest management (IPM) in greenhouse strawberries in Japan. To address this, concurrent use of phytoseiid mites and reduced UVB irradiance is desirable to ensure control effects in areas shaded from UVB radiation and to minimize the sunscald in winter, respectively. We designed experiments reproducing the UVB dose on the lower leaf surfaces in strawberry and evaluated the effects of intermittent UVB irradiation at midnight for practical application in the greenhouse and low temperature on the survival of the spider mite Tetranychus urticae Koch (Acari: Tetranychidae) and damage to the phytoseiid mite Neoseiulus californicus (McGregor) (Acari: Phytoseiidae). The midnight intermittent UVB irradiation effectively suppressed egg hatching and development of larvae of T. urticae, and the control effect was reinforced at 20°C (no eggs hatched at 0.13 kJ m-2 d-1) rather than, at 25°C (70.8% eggs hatched). In contrast, the hatchability of N. californicus eggs was unaffected by intermittent UVB irradiation at 0.27 kJ m-2 d-1 at 25°C and 20°C. However, residual effects of UVB irradiation to N. californicus eggs on survival of hatched larvae were seen, so that reducing the UVB dose is also advantageous for this phytoseiid mite. N. californicus showed a photoreactivation capacity, whereas their UVB tolerance was improved by prey species, suggesting the possibility of the improvement of phytoseiid mites by diet. The reduction of UVB dose and concurrent use of phytoseiid mites increase reliability of the UVB method in IPM strategies in strawberry greenhouse.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call