Abstract

In acute experiments using adult rabbits, we measured the paroxysmal discharge threshold (PADT) elicited by stimulation to the apical dendritic layer of the hippocampal CA1 region before and after low-power laser irradiation. Nd:YVO(4) laser irradiation (wavelength: 532 nm) was introduced into the same region as the stimulation site. The average PADT was 247 +/- 13 microA (n = 18) before laser irradiation, while after 5-min laser irradiation with 50, 75, and 100 mW, PADT was 333 +/- 40 (n = 4), 353 +/- 33 (n = 4) and 367 +/- 27 microA (n = 6), respectively. The latter two increments were statistically significant compared to the control (p < 0.05 and p < 0.01). After 10-min laser irradiation with 75 and 100 mW, PADT was 340 +/- 47 (n = 9) and 480 +/- 60 microA (n = 11; p < 0.01), respectively. Laser irradiation with a specific wavelength and average power offers the potential to suppress the generation of paroxysmal discharges in rabbit hippocampus CA1. Correlation analyses suggest that PADT increments are based on photochemical as well as photothermal effects of laser irradiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.