Abstract
Although laser irradiation has been reported to promote skin wound healing, the mechanism is still unclear. As mast cells are found to accumulate at the site of skin wounds we hypothesized that mast cells might be involved in the biological effects of laser irradiation. In this work the mast cells, RBL-2H3, were used in vitro to investigate the effects of laser irradiation on cellular responses. After laser irradiation, the amount of intracellular calcium ([Ca2+]i) was increased, followed by histamine release, as measured by confocal fluorescence microscopy with Fluo-3/AM staining and a fluorescence spectrometer with o-phthalaldehyde staining, respectively. The histamine release was mediated by the increment of [Ca2+]i from the influx of the extracellular buffer solution through the cation channel protein, transient receptor potential vanilloid 4 (TRPV4). The TRPV4 inhibitor, Ruthenium Red (RR) can effectively block such histamine release, indicating that TRPV4 was the key factor responding to laser irradiation. These induced responses of mast cells may provide an explanation for the biological effects of laser irradiation on promoting wound healing, as histamine is known to have multi-functions on accelerating wound healing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.