Abstract

Using electron microscopy, the ultrastructure of phloem unloading zone was examined in the Prunus persica L. var. nectarina Ait. fruit. Our study showed that, in the SE/CC (sieve element/companion cell) complexes, CC developing under low light had a thin cytoplasm layer with few mitochondria and numerous small vacuoles, and not clearly seen nuclei. The cytoplasm vacuolation indicated that the cytoskeleton was destroyed at low light. The effects of low light on CC development suggest that unloading evidently linked to the low accumulation of soluble sugars by fruit. At the young fruit stage, flesh parenchyma around the phloem tissue had no starch grains in the plastids in fruit developing under low light. This is a further indication that less photoassimilates was translocated from source leaves to fruit sinks under low light during the young fruit developmental stage. The activity of sucrose synthase (SuSy), the key enzyme of sucrose metabolism in fruit, increased dramatically during fruit maturation. The highest SuSy activity during the rapid fruit growth phase suggests that sink strength could be correlated with the SuSy activity. The high SuSy activity under normal light possibly indicates that fruit had a capacity to utilize sucrose irrespective of their site of phloem unloading. Immunogold electron microscopy showed that SuSy was localized mainly in the vacuole of flesh parenchyma cells. The vacuole-localized SuSy can hydrolyze sucrose imported from the phloem, which may explain the apparent correlation between SuSy activity and phloem unloading. The double sieve element (SE/SE) complexes occurred in a greater number and had thicker cell walls under normal light intensity than under low light intensity. These data demonstrate clearly that low light decreased SuSy activity in the control of phloem unloading.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call